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Abstract: To make wind power more competitive, it is necessary to reduce turbine downtime and 13 
reduce costs associated with wind turbine Operation and Maintenance (O&M). Incorporating 14 
machine learning in developing condition-based predictive maintenance methodologies for wind 15 
turbines can enhance their efficiency and reliability. This paper presents a monitoring method that 16 
utilizes Base Density for the Support Vector Machine (BDSVM) and the evolutionary Fourier 17 
spectra of vibrations. This method allows smart monitoring of the function evolution of the 18 
turbine. A complex optimal function (FO) for 5-degree order has been developed that will be the 19 
boundary function of the BDSVM to timely determined from the Fourier spectrum by the 20 
magnitude- frequency, and place of the failure occurring in wind turbine drive. Trend of the 21 
failure was constructed with the maximal values of the frequency optimal functions for each of 22 
cases the upwind and downwind part of the gear box. 23 

Keywords: wind turbine; monitoring; wear trend; Fourier vibration spectrum; support vector 24 
machine; base density of the collected data; machine learning.  25 

 26 

1. Introduction 27 

1.1. The future of wind turbines and the novelty of the paper  28 

Wind energy has seen remarkable growth over the past decade and continues to be 29 

on an upward trend in the power generation industry. In the current context of the 30 

reduction and even abandonment of conventional energy sources, wind energy becomes 31 

a basic source, along with nuclear and hydro. In these conditions, the reliability and 32 

stability of the operation are necessary to maintain the production capacity for the 33 

longest possible periods and with the best possible predictability [1]. With the rapid 34 

development of the wind turbine technology and according with a higher demand of 35 

renewable energy the number of wind turbine (WT) units had a major increase, but 36 

under these conditions the failure rate also increased [2]. Power transmission is 37 

influenced by all components in the kinematic chain, rotor, gearbox, and generator. 38 

After an experience of over 20 years, both in operation and research, it can be concluded 39 

that the component with the highest level of vulnerability is the gearbox, with a very 40 

high failure and downtime [1-3]. To make wind power more competitive, it is necessary 41 

to reduce turbine downtime and increase reliability. Condition monitoring can help 42 

reduce the chances of catastrophic failures, enabling cost-effective operation and 43 
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maintenance practices. Compared to other applications, the representatives of the wind 44 

industry recognized quite late, the benefits and importance of monitoring the operating 45 

status through the use of artificial intelligence (AI) and vibration analysis [4]. Substantial 46 

research has been conducted to establish algorithms based on a large volume of data 47 

that train on specific moments of failure, through machine learning to obtain specific 48 

failure models [4-5]. 49 

This paper presents a method that leverages Fourier spectrum analysis and 50 

machine learning-based data extraction techniques for predicting wear in wind turbine 51 

operation. The novelty of the applied method lies in its utilization of unlabeled and 52 

uncategorized data to infer meaningful results for the predictive maintenance of wind 53 

turbines. In this study functions representing the vibration trends of turbines across 54 

certain speed parameters, power levels, and wind flow conditions have been 55 

constructed. Furthermore, a density-based data filtering technique drawn from a 56 

machine learning-based method; Based Density Support Vector Machines (BDSVM) has 57 

been employed at the data acquisition stages of the experiments.  58 

The research was carried out over a period of about two months. The Fourier 59 

spectrum was analyzed at different points in time while maintaining regulated and 60 

controlled parameters. With the help of at least 5 points from the Fourier spectrum, the 61 

objective functions were defined. The evolution over time of these Fourier spectra's 62 

maximum points (amplitude-frequency) offers an effective approach to ensure 63 

predictive maintenance. The established objective functions can be utilized to determine 64 

the wear evolution in both the low-frequency and high-frequency areas of a wind 65 

turbine. As a result of the experiments the envelope of normal operation and the 66 

envelope of maximum limit of operation are obtained for the gearbox, which is the most 67 

vulnerable part of the wind turbine. The envelope of a maximum limit of operation 68 

refers to wind turbine operation until the appearance of a defect.  These experiments 69 

define the frequency-amplitude limits, which allow predictive maintenance of turbine 70 

components by setting the intervention thresholds without the need for extensive data 71 

collection. 72 

The organization of the paper is as follows. Section 1 includes the details of the 73 

current scenario of predictive maintenance of wind turbines and the state-of-the-art 74 

methods used for the condition monitoring of wind turbines. The research methods and 75 

experiments conducted in this study are discussed in Section 2. The results of the 76 

experiments and their interpretations are presented in Section 3 and the conclusion and 77 

future work is briefed in Section 4. 78 

 79 
1.2. Overview of wind turbine condition monitoring and its need 80 

Wind energy has seen remarkable growth over the past decade and continues to be on 81 

an upward trend in the power generation industry [3]. In the current context of the 82 

reduction and even abandonment of conventional energy sources, wind energy emerges 83 

as a primary source, along with nuclear energy and hydropower [5]. In these conditions, 84 

the reliability and stability of the wind turbine operations are crucial to maintaining the 85 

production capacity for prolonged periods and with optimal predictability [1]. 86 
The monitoring of wind turbine (WT) condition is defined as a complex process of 87 

monitoring the parameters of the state of the machine so that a significant change is 88 
detected, which indicates a possible developing fault [6]. This can potentially help in 89 
different stage of wear: early detection of incipient failures, thus reducing the chances of 90 
catastrophic failures, accurately assessing the proper functioning of the components and 91 
reducing maintenance costs, the analysis of the fundamental causes of the occurrence of 92 
defects and can ensure the optimal determination of the input parameters for an 93 
improved operation of the turbine, the establishment of the control strategy as well as 94 
the optimal design of the components [7-10]. In a broad sense, the CMS of a wind 95 
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turbine can target almost all of its major subsystems, including blades, nacelle, power 96 
transmission, tower, and foundation [9]. This paper presents a method that focuses on 97 
the monitoring of wind turbine, and can be applied to the different components of the 98 
wind turbine: rotor shaft with main bearings, gearbox, and generator. From a CMS 99 
perspective, the three major monitored transmission components are the rotor shaft, the 100 
gearbox, and the generator. Of these three components the gearbox causes the longest 101 
downtime [11-13]. For this reason, the gearbox was chosen as the main subsystem 102 
targeted in this study. In detail, this paper will cover the typical practices, challenges, 103 
and future research opportunities related to CM wind turbine drivetrains [14]. 104 

To understand the dynamic beahviour of a WT and especially of a planetary gearbox, a 105 

number of techniques have been used in reserch and in intustrial field: vibration 106 
analysis,  oil condition analysis, thermography, aqustique measurmenet, acoustic, 107 

boroscopic inspection, electrical parameters effects, self-diagnostic of sensors, etc [15]. In 108 

order to ensure optimal conditions for predictive maintenance, a combination of 109 

different techniques is needed. Even if the vibration technique has a dominant 110 

proportion, it is supported in the decision by the other specific technologies. 111 

However, vibration analysis on component fault diagnosis in wind turbines is a hard 112 

challenge due to the complex mechanical conditions of the power transmission 113 

kinematic chain, the variable operating conditions with transient phenomena, and the 114 

speed differences between the different elements of the gearbox [15-17]. The use of 115 

vibration transducers, respectively piezoelectric accelerometers, is the most used 116 

method, with different sensitivities depending on the speed and with rigid fixation on 117 

the structure of the components [7-9]. The repartition of the sensors in the monitoring 118 

process of the wind turbine from the actual stage of the research is shown in Figure 1 119 

and Table 1. 120 
In this paper, the focus is on the monitoring of wind turbine drivetrains. The drive 121 

trains consist of the main bearing, main shaft, gearbox, brake, generator shaft, and 122 
generator. From a CM perspective, the three major monitored transmission components 123 
are the main bearing, the gearbox, and the generator. Of these three components [6] the 124 
gearbox causes the longest downtime. Other research has also shown that the gearbox is 125 
the most expensive subsystem to maintain during the 20-year operating life of a turbine 126 
[1-7]. For this reason, the gearbox was chosen as the main subsystem targeted in this 127 
study.  128 

1.3. State of the Art in Turbine Wear Monitoring and Trend Analysis  129 
Current research has led to the identification of the following monitoring techniques 130 

and directions, which can be applied to wind turbines [14-15]: Vibration analysis; Oil 131 
condition analysis; Thermography of important elements in the turbine structure 132 
(gearbox); Analysis of the physical condition of the materials; Measurement of elastic 133 
yielding and deformation of various components; Acoustic measurements in various 134 
sensitive areas of the turbine; Measurement of various electrical effects; Process 135 
parameter measurement; Visual inspection; Performance monitoring by comparing 136 
output sizes for the same input data;  Use of self-diagnostic sensors  (figure 1). 137 

a) Vibration analysis- Vibration analysis is the most well-known technology for 138 
monitoring the working conditions, especially for rotating equipment [15]. The type of 139 
sensors used depends: on the frequency range used for monitoring,  position of 140 
transducers on the transmision chain for the low-frequency range, velocity sensor in the 141 
5- 1000 Hz frequency domain, accelerometers for the high-frequency range; acoustic 142 
sensor for gearbox monitoring or blades.  143 

b) Oil analysis - Oil analysis is another evaluation criterion, which, coupled with 144 

vibration analusis, contributes to decision-making in predictive maintenance. Oil 145 
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analysis is mostly done offline, by sampling but also ensuring the quality of the oil, 146 

contamination with dirt from the parts in contact, moisture, degradation of additives 147 

and maintaining the oil filter. However, to protect oil quality, the application of online 148 

sensors is used more and more often, especially for particle counter. In addition, 149 

protecting the condition of the oil filter is currently mainly applied to both hydraulic oil 150 

and lubricating oil. In case of excessive pollution of the filter, or change in the 151 

characteristics of the oil, this leads to excessive wear [15]. 152 

c) Thermography- Thermography is often applied for monitoring and fault identification 153 

of  electrical and elecronic components [15]. Hot spots due to component degeneration 154 

or poor contacts can be identified in a simple and fast way by using cameras and 155 

diagnostic software. Mainly they are used in generator and power converter monitoring 156 

but also for the thermal gear contact. 157 

d) Inspection of compoenets condition- This type of monitoring mainly focuses on detecting 158 

and tracking the evolution of wear, using borosocpe device. The methods are normally 159 

offline and are a very important decision criterion for stopping, limiting or planning the 160 

repair [15-16]. 161 

e) Deformation measurement- Deformation measurement using manometers is a common 162 

technique but not often applied in a case of wind turbine monitoring. Strain gauges are 163 

not robust in the long term [15-17]. For wind turbines, deformation measurement can be 164 

very useful for life prediction and stress level protection, especially for blades [18] and 165 

also for the main shaft.  166 

f) Acoustic monitoring - Acoustic monitoring is related to vibration monitoring using the 167 

noise measurement. Acoustic monitoring technology can be used for blades condition 168 

monitoring using acoustic mircophone or for bearings and gearboxes monitoring using 169 

acoustic emission sensor fixed directly to the housing [15]. 170 

g) Electrical effects – Electrical parameters monitoring of generator represent a mandatory 171 

conditin in based condition maintenance (CBM). The analysis of electrical parameters, 172 

such as: electrical current,voltage, insultation, power, etc., they allow both the evaluation 173 

of the quality of the generated power and the analysis of the potential faults [17]. 174 

h) Process parameters- Control systems monitoring (CMS) are becoming more 175 

sophisticated and their diagnostic capabilities are improving. However, protection is 176 

mostly based on level detection or signal comparison, which directly leads to an alarm 177 

when the signals exceed predefined threshold values. The integration of machine learing 178 

is still at the beginning, but in the future, solutions using AI will be sought for the large-179 

scal development [15].  180 

i) Performance monitoring- Wind turbine performance is often gauged through the 181 

relationship between power, wind speed, rotor speed, and blade angle, and in case of 182 

large deviations, an alarm or even stopping is generated [15]. Detection of margins are 183 

large to prevent false alarms [19]. Similar to process parameter estimation, more 184 

sophisticated methods like performance evolution monitoring are still not a common 185 

practice. 186 
Thus, to obtain reliable predictive maintenance results, a combination of different 187 
techniques is needed. While vibration analysis may hold a predominant role, it is 188 
complemented by other specific technologies to perform decision-making accurately 189 
(figure 1). 190 

 191 
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                      192 

Figure 1. The position of the sensors for the monitoring process. 193 

 194 

2. Applied Research Methods 195 

            2.1. Condition monitoring system 196 

In this research, the experimental protocol is based on the Condition Monitoring 197 

System (CMS) The data used is part of the online data protocol regarding the wind 198 

turbines' state of operation. The recorded data is analyzed using signal evaluation both 199 

in the time domain and in the frequency domain. The CMS provides all data sets as 200 

originally optimized for all turbines. The data is collected from a wind turbine gearbox. 201 

The repartition of the sensors in the monitoring process of the wind turbine from the 202 

actual stage of the research is shown in Figure 2. 203 

The analysis is centered on the gearbox, examining the vibrations at three specific 204 

points of the gearbox: Low-speed Shaft (LSS), Intermediary Shaft (IS), and High-Speed 205 

Shaft (HSS). The data acquisition is conducted using vibration sensors fixed on the 206 

bearings of the kinematic chain, starting from the input, which is the rotor side, and 207 

extending to the output, which is the generator side. 208 

       209 

Figure 2. Schema of the experimental stand with the position of the used sensors. 210 
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Table 1- Sensors notation and position on the wind turbine 211 
Sensor label Description 
B1-MB-RS Main bearing accelerometer- rotor side 
B2-MB-GS Main bearing accelerometer- generator side  

B3-LSS Gearbox accelerometer- low-speed shaft 
B4-IS Gearbox accelerometer- intermediary shaft 

B5-HSS Gearbox accelerometer- high-speed shaft 
B6-G-DE Generator accelerometer drive end-side 

B7-G-NDE Generator accelerometer non-drive end-side 

 212 
The data transmission and processing chain is described in Figure 3. The online 213 

acquisition system allows the data to be recorded according to the original settings thus 214 
capturing signals along with their speed and power readings. In this way, the evolution 215 
of vibrations can be determined specific to certain values of speed and power [20]. The 216 
system allowed the definition of parameters in the frequency domain both in the 217 
acquisition and analysis phases. The selected frequency range is according to ISO10816-218 
21 standards, including the rotor, gearbox, generator, and tower/nacelle. Figure 3 shows 219 
the data sets according to CMS, for the gearbox in the 3 entry points, LSS, intermediate 220 
IS, and HSS.  221 
 222 

 223 
 224 
 225 
 226 
 227 
 228 
 229 
 230 
 231 

Figure 3. Synopsis of data acquisition and signal processing. 232 
 233 

In these experiments the data from the input of the gearbox, the acceleration in the 234 
frequency domain at LSS, and the data of the gearbox output, in the frequency domain 235 
at HSS is taken into account, figure 4.   236 

 237 
Figure 4. Example of CMS data presentation. 238 

2.2. Signal processing and defect detection  239 

The experimental is based on real-time vibration monitoring, using National Instrument 240 

equipment cRIO-9076,  with 12 input chanels, 24 bits resolution and a 50kSamples/s/ch. 241 

max. speed, figure 5. The real time monitoring data is  set on 25kSamples/s, a buffer size 242 

with 32768Samples and a block size with 10kSamples. The vibration monitoring provide 243 

the signal data from the 3 acceleormteres fixed on the 3 gearbox points: the LSS with the 244 



Dynamics 2024, 24, x FOR PEER REVIEW 7 of 23 
 

 

1-2 stages, the IS- the 3 stage and the HSS with the spur gear stage. The accelerometers 245 

used are with the 100mV/g sensitivity for the IS and HSS point and with 500mV/g 246 

sensistivity for the LSS point. For a precise synchronization between vibration singnals 247 

and speed signal, a laser speed sensor fixed at the generator side was used. 248 

                249 
                    Figure 5. Vibration monitoring devices. 250 

 251 
Signal analysis was done by numerical processing taking into account the parameters 252 

(frequency and amplitude) being monitored. Thus, Figure 6 shows the waveforms 253 

obtained with the help of the monitoring software both in the time domain and in the 254 

frequency domain and in figures 7 and 8 are shown acceleration signal in the case of the 255 

gearbox wear. The vibration parameters are set according to the ISO10816-21 standard, 256 

specifying acceleration in m/s² RMS, vibration velocity in mm/s RMS, and demodulated 257 
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 Figure 6. Signal processing and defect detection from CMS. 277 
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²E. With the bearing frequency data, the characteristic frequency of the bearing defect 278 

can be identified. The structure of the vibration parameters is complex and based on the 279 

vibration defect theory [21,22]. The vibration limits for wind turbines, provided by the 280 

ISO standard 10816-21, present an integrated base defining the recommended state of 281 

operation [23-25]. Even in this situation, many specific cases of vibration of the wind 282 

turbine components are difficult to classify according to this standard [26]. For this 283 

purpose, it is proposed to develop a model that can interpret the state of operation in 284 

real operating conditions using data provided by CMS 285 

 286 

           Figure 7. Acceleration signal in the case of the gearbox wear. 287 

The processing datat and anlalysis aproch for bearing detection is applied alos for gear 288 

characterization by using the gear mesh frequency data according to the kinematic chain 289 

of the gearbox [9-12]. The signal processing and analysis is perform with Fastview 290 

software, which allows the use of both vibration monitoring and analysis in real time. 291 

The software allows the identification of the specific failure frequencies of the gear and 292 

bearings by the method of vibration demodulanting using envelope function [27] with a 293 

dynamic filtering of the specific domain frequencies (figure 7). 294 

A novelty in the evaluation analysis of the gearboxes wear condition is the envelope 295 

method using the Hilbert transform [27] with side bands energy coefficient integration, 296 

called SER coefficenent (Sideband Energy Ratio™, a patent pending algorithm utilized 297 

in the General Electric) [28-30] so that the impact energy generated by the defect can be 298 

quantified (figure 8). 299 

Figure 8 shows the spectrum of the acceleration envelope in the case of the gearbox 300 

defect. The quantification of the defective condition is evaluated by means of the gear 301 

mesh frequency presence (GMF) in relation to the side bands, as well as its harmonics. 302 

According to the quantification of the level of sidebands in relation to the amplitude of 303 

the GMF frequency, it can be found that the ratio is less than one, which means that the 304 

defect on the HSS stage is present, and is in an advanced state. 305 
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 306 

           Figure 8. Envelope acceleration in the case of a gearbox wear. 307 

2.3. Using BDSVM-Based Data Extraction Technique 308 

The Base density of the Support Vector for Machine Learning (BDSVM) [30]  has been 309 

beneficial in establishing the basic data for neural network learning. In any monitoring 310 

activity, it is more efficient to train the neural network using BDSVM as it reduces the 311 

learning input data (decreasing computational complexity) and determines the resulting 312 

weights matrices to identify a mechanical failure without being impacted by the outliers. 313 

This study exploits this method to find the most relevant data points and establish the 314 

objective function (FO).   315 

This data extraction method is based on the filtering of data points based on their 316 

population density. Population density of data points refers to the correlation between 317 

the population size and the space they occupy. The rationale behind this data filtering is 318 

to deal with the data points that are influenced by random noises or gross errors. These 319 

data points do not accurately represent the general trend. These points are considered 320 

outliers and can affect the accuracy of the established objective functions and 321 

subsequently the analysis. The densely populated areas in the input space are 322 

determined by calculating the Mahalanobis distance (9). The points lying in this region 323 

are considered meaningful points while the points lying outside of this region are 324 

considered outliers. 325 

The Mahalanobis distance is calculated from the quantity µ which represents the 326 

average of the points' distances, to each point. The cov-1 represents the inverse covariance 327 

matrix. This distance is [33,34]. The Mahalanobis distance takes into account the 328 

correlation of the data set and does not depend on the measurement scale [34-36]. The 329 

population variance is calculated with a variance-convariance matrix [35]. The 330 

Mahalanobis distance from the point to the mean of the distribution µ can be calculated 331 

by (9), and the Mahalanobis distance from one point to another can be calculated by (10): 332 
 333 

					𝑑 = $(𝑥 − 𝜇)!𝑐𝑜𝑣"#(𝑥 − 𝜇)        334 
       (9) 335 

					𝑑 = $(𝑥 − 𝑦)!𝑐𝑜𝑣"#(𝑥 − 𝑦)           (10) 336 
 337 
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Where the population variance is calculated with [12]: 338 
 339 

𝑣𝑎𝑟(𝑥$) =
∑!" ('"()#

$
              (11) 340 

     341 
and population covariance with: 342 
 343 

𝑐𝑜𝑣(𝑥$, 𝑦$) =
∑!" ('$"(%)*+$"(&,

$
         (12)  344 

 345 
If cov(xi) & cov(yi)>0 346 

both of them increase or decrease; 347 

If cov(xi) & cov(yi)<0 348 

when xi increases yi decreases or vice-versa; 349 

If cov(xi) & cov(yi)=0 350 

not exist any relation between xi & yi; 351 

If var(xi)> var(yi) 352 

xi increase or decrease faster than yi; 353 

End. 354 
 355 
The average of d is: 356 
 357 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑 =
∑!" -('$"()'./0("('$"()

$
                           (13) 358 

 359 
where di is the distance between the points and d is the average of these distances 360 
 361 
If  di >d,  362 

the point i is in the outlier group; 363 

Else  364 

the point i will be considered important (meaningful) points in BDSVM; 365 

End. 366 

2.4. Objective functions 367 

The optimization function (FO) was proposed as a polynomial function of the fifth order 368 

with real coefficients that will be constructed by using the data from the acquisition of 369 

Fourier spectrum of the vibrations: 370 
 371 
𝐹𝑂 = 𝑎# ∗ 𝑥1 + 𝑎2 ∗ 𝑥3 + 𝑎4 ∗ 𝑥4 + 𝑎3 ∗ 𝑥2 + 𝑎1 ∗ 𝑥 + 𝑎5   (14) 372 
 373 
where ai will be determined by using the matrix equation: 374 
 375 

 8
𝒂𝟏
𝒂𝟐…
𝒂𝟔
; = <=

𝒙𝟏𝟓 ⋯ 𝒙𝟏	𝟏
⋮ ⋱ ⋮
𝒙𝟓𝟓 ⋯ 𝒙𝟓	𝟏

C =
𝒙𝟏𝟓 ⋯ 𝒙𝟏	𝟏
⋮ ⋱ ⋮
𝒙𝟓𝟓 ⋯ 𝒙𝟓	𝟏

C

𝑻

D

"𝟏

E
𝑭𝑶𝟏
…
𝑭𝑶𝟓

H                              (15) 376 

         377 
         378 
with the following constraints: 379 
- xi>0; 380 
- xi must be meaningful points, xi ∈ group 1; 381 
- xi ∈ BDSVM, 382 

where FOi is the amplitude of the vibration evolution in time where the defect will 383 

appear and xi is the frequency in time. To define the FO, 5 boundary points (xi, 384 

FOi)∈BDSVM will be used for each moment of time vs. frequency points but under the 385 

same conditions of forced vibration and for the same wind turbine. The BDSVM points 386 

must strictly adhere to the condition of belonging to BDSVM which is that: 387 
 388 

  di <average_d .    (16) 389 



Dynamics 2024, 24, x FOR PEER REVIEW 11 of 23 
 

 

 390 
The boundary of FO will be the limit of the optimal functioning of the wind turbine. In 391 

this way, the moment of time for intervention on the gearbox will be determined, to 392 

eliminate the danger of an imminent defect.  393 

2.5. The used proper LabView virtual instrument for FO 394 

To solve the objective function FO, proper LabView virtual instrumentation was used 395 

and the block schemas are shown in Figures 9-11. 396 

 397 
Figure 9. Part of the block schema of the LabView virtual instrument to determine the FO5 order. 398 

                              399 
Figure 10. Part of the block diagram represents the FO (polynomial function of the 5-degree order) characteristic. 400 
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 401 
Figure 11. Front panel with the results of the optimization function FO for known points from the BDSVM (the 402 

maximal values from the Fourier spectrum). 403 

2.6. Description of the used algorithm 404 

The used algorithm includes the following stages, as depicted in figures 12 and 13: (i) 405 

acquisition of data at different moments of time, for the same parameters of wind, 406 

power, speed; (ii) application of relation (12) for calculating the distances between points 407 

di (max. amplitude, frequency of the fourier spectra acquired); (iii) applying relation (13) 408 

to determine the average distance, d; (iv) defining group 1 of the BDSVM after checking 409 

the condition di<d; (v) establishing the boundary curve of BDSVM; (vi) analysis of 410 

Fourier spectra from group 1; (vii) defining the 5 maximum points from the Fourier 411 

spectra both for the upwind position and for the downwing position of the sensors; (viii) 412 

the use of LabView virtual instrumentation to determine the 5th order objective 413 

functions; (ix) plotting multiple objective functions for Fourier spectra acquired during 414 

three months of operation, under the same conditions of wind, power, speed; (x) 415 

defining the maximum points of the objectively drawn functions, in order to determine 416 

the trend; (xi) determining the coefficients of the 5th order objective functions of the 417 

trend for both low and high frequencies, as well as for upwind and downwind of the 418 

gear box sensors positions. 419 

 420 
Figure 12. Block schema of the part of the used algorithm to establish the BDSVM of the collected data. 421 
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 422 
Figure 13. Block schema of the part of the used algorithm to establish the objective functions (FO) by using the 423 

Fourier spectrum collected from the boundary of the BDSVM.   424 

3. Results and Analysis 425 

3.1. Establishing FO boundary of Fourier spectrum 426 

If the operational limit of the turbine is set at a specific FO, a defect can be easily 427 

detected through control at each frequency. This can be done by checking if the 428 

operational point (frequency, magnitude) is in the normal functioning area or outside of 429 

this. In this way, it is possible to determine the maximum permissible magnitude of 430 

vibration. 431 

In this case, the equation of the FO will be: 432 
 433 
  𝐹𝑂 = −6.043𝑥! + 2.233𝑥" + 0.0005𝑥# − 0.04𝑥$ + 0.74𝑥 + 0.225    (17) 434 

For predictive maintenance, the following relation would be applied: 435 
 436 
𝐹𝑂;(𝑓;) < 𝐹𝑂<(𝑥;)        (18) 437 
 438 
where xi is the frequency for the imposed five points ∈ BDSVM, the points from 439 

boundary limits, and fi is the all current frequencies that must be checked. If this 440 

condition is false, the respective points could be the potential mechanical wear. 441 

Using the Fourier spectra, the objective functions (FOi) were constructed the 442 

objective functions (FOi) for each of these data sets. All these FOs were shown in Figure 443 

12-15,  for upwind and downwind sensors from the wind turbine gearbox. All objective 444 

functions FO, were determined by using the maximal values of magnitude from each of 445 

the used Fourier spectra, see the table of each acquisition Fourier spectrum.  446 

 447 

3.2. Construct the objective functions FO for all selected Fourier spectra 448 

  To construct the FO for the data acquisition and establish the trend of the 449 

maximum values of the vibration magnitude vs. frequency were used four Fourier 450 

spectra for the upwind and downwind bearings, see Figure 15. The results of FOi are 451 

shown in Figures 16 and 18.  452 

To validate the mathematical vibration model proposed (figure 13), the vibration 453 

data is obtained from the CMS of 2.0 MW industrial WT gearbox, based on the 454 

acceleration position and data acquisition shown in figure 2 and 5. The gearbox is 455 

planetary type with a transmissions ratio 116. This model was applied to synthesize the 456 
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data acquisition of the wind turbine in the period between December 2023 to February 457 

2024. The conditions that were imposed are the following: (i) the data acquisition was for 458 

the same, or very similar wind turbines; (ii) the data acquisition was carried out from the 459 

sensors from the gearbox, B3-LSS, and B5-HSS, HSS upwind bearing radial and similarly 460 

HSS downwind bearing radial; (iii) the data acquisition was performed in the similar 461 

dynamic conditions of wind intensity, speed, and power; (iv) the acquisition data that 462 

was synthesized is the data that falls under the condition to be classified as a meaningful 463 

point, xi ∈group 1,xi ∈ BDSVM,see figure 14. 464 

 465 
Figure 14. The acquisition data distribution and the establishment of boundary values for group 1, 466 
representing meaningful points of BDSVM, occur under similar dynamic conditions of speed and 467 
power. This characteristic is constructed by applying the BDSVM algorithm. 468 

 469 

 470 
a- Fourier spectrum at 1514RPM and 1037.4kW on 25/12/2023, in an upwind position 471 

 472 
b- Fourier spectrum at 1577RPM and 1169.4kW on 18/01/2024, in an upwind position. 473 
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 474 
c- Fourier spectrum at 1492RPM and 1027.6kW on 26/01/2024, in an upwind position. 475 

 476 
d- Fourier spectrum at 1552RPM and 1158kW, om 30/01/2024 in an upwind position. 477 

 478 
e- Fourier spectrum at 1523RPM and 1054kW on 25/12/2023, in a downwind position. 479 

 480 
f- Fourier spectrum at 1455RPM and 971.4kW on 11/01/2024, in a downwind position. 481 
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 482 
g- Fourier spectrum at 1471RPM and 982kW on 18/01/2024, in a downwind position. 483 

 484 
h- Fourier spectrum at 1481 RPM and 1006.5kW on 26/01/2024, in a downwind position. 485 
Figure 15. Fourier spectrum from data acquisition between December 2023 to February 2024, in an 486 
upwind and downwind position of the sensors in the gearbox of WT. 487 
 488 

                                  489 
Figure 16. Objective functions (FOi) for all four selected acquisition data in the upwind sensor position.  490 

Using the data from the column matrices ai, the fifth-order equation for FOi will be 491 

determined. The FOi for the upwind position of the sensor is shown in relation (19) 492 

and for the downwind position in relation (20). 493 
 494 
𝐹𝑂 = 6.64𝑥! − 0.00017𝑥" + 0.017𝑥# − 0.0668𝑥$ + 8.84𝑥 + 2.473                      (19) 495 

															𝐹𝑂 = 7. 44𝑥! − 0.0002𝑥" + 0.019𝑥# − 0.762𝑥$ + 10.368𝑥 + 2.921	496 
																											𝐹𝑂 = 9.291𝑥! − 0.00025𝑥" + 0.00246𝑥# − 0.969𝑥$ + 13.1305𝑥 + 3.664	497 

												𝐹𝑂 = 8.28𝑥! − 0.00022𝑥" + 0.02𝑥# − 0.762𝑥$ + 9.781𝑥 + 2.735	498 



Dynamics 2024, 24, x FOR PEER REVIEW 17 of 23 
 

 

                  499 
Figure 17. The front panel of the used LabView VI-s with input and output data for the 500 
upwind position sensor.  501 

                                   502 
Figure 18. Objective functions (FOi) for all four selected acquisition data in a downwind 503 
sensor position.  504 

                           505 
Figure 19. The front panel of the used LabView VI-s with input and output data for the 506 
downwind position sensor.  507 



Dynamics 2024, 24, x FOR PEER REVIEW 18 of 23 
 

 

							𝐹𝑂 = −3.745𝑥! + 5.323𝑥" − 0.00025𝑥# + 0.045𝑥$ − 2.447𝑥 − 0.054                  (20) 508 
							𝐹𝑂 = −1.494𝑥! + 1.68𝑥" − 0.00062𝑥# + 0.08𝑥$ − 1.056𝑥 − 0.04                  509 
							𝐹𝑂 = 5.902𝑥! − 5.157𝑥" + 0.00014𝑥# − 0.171𝑥$ + 7.366𝑥 + 0.25                  510 
							𝐹𝑂 = 7.391𝑥! − 6.068𝑥" + 0.00161𝑥# − 0.161𝑥$ + 5.767𝑥 + 0.234                  511 

 512 
All determined FOs represent different stages of the mechanical condition of the turbine 513 

gearbox assembly.  514 

 515 

3.3. Determine the FO for the trend 516 

With the help of these functions, the trend of potential defects in the turbine gearbox 517 

area can be assessed. The characteristic frequencies of the WT gearbox in the damage 518 

case are presented in the figure 20 and 21, corresponding to LSS-upwind and HSS-519 

downwind. The frequency spetrum of acceleration for LSS – upwind position shows the 520 

fundamental frequency of planet pin (figure 20) and  the frequency spectrum of  HSS – 521 

downwind position, shows the existence gear meash frequency (GMF) generated by the 522 

HSS pin gear and planet pin gear. In the case of a fault gear the amplitude is much 523 

higher, reaching up to 10 times higher than in the normal condition case. 524 

At any given moment, it is possible to check if the function is approaching the period 525 

close to the appearance of a defect or not [37, 38]. Throughout this timeframe, it will be 526 

possible to examine whether the points (Frequency, Magnitude) fall within the first or 527 

last FO or between them, providing information on the proximity of a potential defect, 528 

as per relations (19) and (20). The trends of these functions are depicted in Figure 22, 529 

represented by the maximum of the FO for each of the cases. 530 

 531 

 532 
Figure 20. The frequency spectrum at LSS poistion in the case of gearbox defect. 533 
 534 



Dynamics 2024, 24, x FOR PEER REVIEW 19 of 23 
 

 

 535 
Figure 21. The frequency spectrum at HSS poistion in the case of gearbox defect. 536 
 537 

The trend functions are the following:                   (21) 538 

- for the low frequency in the upwind position 539 
	𝐹𝑂 = 5.6234𝑥! − 205.21𝑥" + 2779.11𝑥# − 16307.64𝑥$ + 32142.12𝑥 + 20071.2         540 

- for high frequency  in the upwind position 541 
  							𝐹𝑂 = 4.306𝑥! − 0.0096𝑥" + 0.7267𝑥# − 18.112𝑥$ − 0.9755𝑥 − 0.0328             542 
- for high frequency in the downwind position     543 

𝐹𝑂 = −1.0703𝑥! + 0.0086803𝑥" − 2.6357𝑥# + 355.109𝑥$ − 17907.9𝑥 − 451.047                  544 
							(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)%&'(')(*+,-%&	/0'*!"#$%&	()	&(#%#$%& ∈ 𝐹𝑂(*012!"#$%&	()	&(#%#$%&                    (22) 545 

 546 

 547 
a- Trend of the FO in the upwind position of the gearbox sensor in a low frequency. 548 

 549 
b- Trend of the FO in the upwind position of the gearbox sensor in a high frequency. 550 
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 551 
c- trend of the FO in the downwind position of the gearbox sensor. 552 

Figure 22. The trend of the magnitude- -frequency points from the FO. 553 
 554 
If the first FO objective function is defined after an intervention when the gearbox is 555 

working correctly, and the last function is determined close to the appearance of a 556 

defect, the position of any point (frequency, amplitude) can be determined between 557 

these limits. Intermediate FOs define the intermediate limits. By using this method, it 558 

will be possible to implement preventive maintenance and also monitor the normal 559 

operation of the gearbox of the wind turbine. The validation of this developed method 560 

can be carried out by checking whether the maximum points (frequency, magnitude) 561 

from the Fourier spectrum belonging to a certain trend as identified by the objective 562 

functions, correspond to any known instances of gearbox malfunction or failure in wind 563 

turbines. This would be done through collaboration with a wind turbine expert. 564 

4. Conclusions and future work 565 

This paper presents a novel approach to address the complexities of vibration 566 

monitoring and analysis in wind turbine gearboxes. By leveraging mathematical 567 

modeling and AI techniques, we have developed a method for evaluating gearbox 568 

conditions during operation that can help make meaningful interpretations from 569 

uncategorized vibration data from wind turbines. After analyzing the obtained results, 570 

the objective functions, and the trend of the monitoring results, we can make the 571 

following remarks: (i) The applied method is general and can be applied to many other 572 

dynamic monitoring processes; (ii) The designed LabView instrumentation for the 573 

synthetic analysis of the obtained acquisition data opens the way to applying more 574 

virtual instrumentation in monitoring the dynamic behavior across various mechanical 575 

fields; (iii) Using BDSVM to filter out the meaningful data adds a new front to applying 576 

machine learning in monitoring processes; (v) Establishing the trend of the FO for each 577 

position of the gearbox sensors ensures the design of an intelligent monitoring system 578 

for predictive maintenance; (vi) The trend for the low frequency in the upwind sensor 579 

position is a decrease in frequency and an increase in magnitude; (vii) conversely, the 580 

trend involves an increase in both frequency and magnitude for the high frequency; 581 

(viii) in the downwind sensor position, the trend is characterized by an increase in 582 

frequency and a decrease in magnitude.   583 
In future work, we propose to generalize this method and leverage neural networks 584 

for the rapid establishment of weight matrices, objective functions, and wear trends in 585 
wind turbines across all sensors. This will be integrated into a comprehensive matrix 586 
comprising objective functions, alongside a monitoring and trend matrix. 587 

In the next stage of this research SVM Regression analysis will be implemented to 588 
predict the magnitude of vibrations based on various input features (e.g., frequency, 589 
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time). This information will help obtain a quantitative measure of potential defects. 590 
Upon further assessment of the FFT spectrum of vibrations leading up to failures or 591 
defects, we also aim to study and explore other features (fluctuations in phase, etc.) that 592 
could indicate upcoming defects. This condition-based maintenance strategy can also be 593 
further enhanced by incorporating supervised classification. We plan to label the 594 
datasets indicating different points (labeled points)  in time leading up to the developing 595 
fault. This would be done through collaboration with the industry specialists. The 596 
classification algorithm can be employed to identify the definite states of the system 597 
(normal operation, potential fault, critical fault). The combination of regression and 598 
classification would allow for a more comprehensive predictive maintenance approach. 599 

The proposed method is intended to be applied in other industrial applications in the 600 

case of condition monitoring of machine-tool spindles. 601 
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